ACCELERATING PEDIATRIC DRUG DEVELOPMENT
A FRIENDS OF CANCER RESEARCH FORUM
SUPPORTED BY ST. BALDRICK’S FOUNDATION
Opening Remarks

Ellen V. Sigal
Chairperson & Founder, Friends of Cancer Research
ACCELERATING PEDIATRIC DRUG DEVELOPMENT
A FRIENDS OF CANCER RESEARCH FORUM

SUPPORTED BY ST. BALDRICK’S FOUNDATION
Childhood Cancer Research and Drug Development Landscape

Mark Fleury PhD
Policy Principal-Emerging Science
Childhood Cancer Drug Development

- Drug development of any kind shares common elements
- Unique challenges faced in childhood cancer
- Report is a joint project between ACS and the Alliance for Childhood Cancer
- Describes the process, landscape and unique challenges in childhood research
- Available at: www.cancer.org/childrensreport
Landscape Report Organization

- Biology
- Preclinical Research
- Clinical Research
- Regulatory Requirements
- Funding and Economic Forces
Summary Findings

• Childhood cancers are often biologically different than the cancers that share the same name in adults, meaning that childhood-specific research is required.
• Side effects from treatment cause significant health impacts on children.
• The rarity of childhood cancers
 – Can make recruiting children to participate in clinical research challenging, either due to a small number of diagnosed patients or due to competition between different research projects.
 – Means smaller financial incentives to develop and market drugs specifically for children with cancer. This leads to greater governmental and non-profit roles in drug development.
• Society has afforded special protective status for children involved in research, which changes the type of research generally considered to be ethical for children and also changes the process for approving such research.
Arriving at New Therapies for Kids

Therapies for Children Can Follow Multiple Research Paths

Adult Use
- Basic Research
- Preclinical
- Clinical Testing Phase I, II, III
- Post-market

Pediatric Use
- Basic Research
- Preclinical
- Clinical Testing Phase I, II, III
- Post-market

9 Crossover
3 Pediatric Development

12 Pediatric Label Indications since 1980
Childhood cancers are often biologically different than the cancers that share the same name in adults, meaning that childhood-specific research is required.
Basic Research

- Childhood cancers are often biologically different than the cancers that share the same name in adults, meaning that childhood-specific research is required.
Basic Research

- Side effects from treatment cause significant health impacts on children
Preclinical

“There is a lack of preclinical data to justify running some trials that are proposed.”
— Dr. Gregory Reaman, Associate Director, Office of Hematology and Oncology Products, US FDA

“There is a clear preclinical funding gap. Deprioritizing the thorough and expensive kind of preclinical studies that have depth of biological replicates and appropriate statistical power can leave many trials vulnerable to misinformed conclusions at their foundation.”
— Dr. Charles Keller, Scientific Director, Children’s Cancer Therapy Development Institute

“Unless we can generate meaningful preclinical data, we won’t be able to develop a treatment that is a home run. At present, people use weak rationales to justify taking a drug for adults and using it on kids without strong preclinical justification.”
— Dr. Girish Dhill, Director, Neuro-oncology program, Children’s Hospital Los Angeles
Preclinical
Challenges with Low Numbers

- The rarity of childhood cancers
 - Can make recruiting children to participate in clinical research challenging, either due to a small number of diagnosed patients or due to competition between different research projects.
Low Numbers but High Participation

• 90% of children with cancer are treated at a Children’s Oncology Group (COG) facility
• 50%-60% Enroll on some type of trial (therapeutic and non-therapeutic)
• 20%-30% Enroll on a therapeutic trial
• COG funded at ~$30 M/yr by NCI
Who Drives Research?

Funding Sources Shift Across the Spectrum of Adult Drug Research

- Basic Research
- Preclinical
- Clinical Testing Phases 1, 2 & 3

Funder
- Private Industry
- Philanthropy
- Government

Who drives research can vary significantly depending on the stage of the research process.
Who Drives Research?

Funding Sources Shift Across the Spectrum of Adult Drug Research

- Private Industry
- Philanthropy

Phases:
- Preclinical
- Clinical Testing Phases 1, 2 & 3
Challenges with Low Numbers

• The rarity of childhood cancers
 – Means smaller financial incentives to develop and market drugs specifically for children with cancer. This leads to greater governmental and non-profit roles in drug development.

Regulatory programs to change the natural incentives—BPCA, PREA, Creating Hope
Summary Findings

• Childhood cancers are often biologically different than the cancers that share the same name in adults, meaning that childhood-specific research is required.
• Side effects from treatment cause significant health impacts on children.
• The rarity of childhood cancers
 – Can make recruiting children to participate in clinical research challenging, either due to a small number of diagnosed patients or due to competition between different research projects.
 – Means smaller financial incentives to develop and market drugs specifically for children with cancer. This leads to greater governmental and non-profit roles in drug development.
• Society has afforded special protective status for children involved in research, which changes the type of research generally considered to be ethical for children and also changes the process for approving such research.
Summary

• Challenges ranging from biological to logistical to ethical and economic require enhanced collaboration among stakeholders who share the common goal of advancing treatments to cure childhood cancers.
ACCELERATING PEDIATRIC DRUG DEVELOPMENT
A FRIENDS OF CANCER RESEARCH FORUM
SUPPORTED BY ST. BALDRICK’S FOUNDATION
NCI-COG Pediatric Molecular Analysis for Therapy Choice (MATCH) APEC1621

A phase 2 precision medicine cancer trial
Co-developed by the Children’s Oncology Group and the National Cancer Institute

February 21, 2017
Hypothesis

By identifying genetic changes affecting pathways of interest in refractory and recurrent pediatric cancers, we will be able to deliver targeted anticancer therapy that produces a clinically meaningful objective response rate.
Number of Somatic Mutations in Human Cancers

- Childhood cancers generally have lower mutation rates than adult cancers

NCI-COG Pediatric MATCH

Available MATCH study agents

1. Single stage
2. 20 patients per arm
3. Non-histology driven
4. Estimate 300 patients/year
5. ~8 agents to start

NO ACTIONABLE MUTATION DETECTED (90%)
Pediatric MATCH Specimen Work Flow Schema

1. Biopsy
2. Shipped to Nationwide
3. Tissue Accession
4. Tissue Processing
5. NA Extraction
6. NA Shipped
7. Archive
 - Tissue Blocks
 - Slides
 - Nucleic Acid
8. PTEN
9. MDA
10. MoCha
11. Library Prep and Sequencing
12. Ion Reporter
13. Review and Sign off
14. BAM File Storage
15. MOI Annotation
16. MATCH Box
17. Final Report
18. Clinical DB
NCI-COG Pediatric MATCH
Design Features

- Test many children and adolescents to find widely distributed genetic alterations

- Requirement for biopsy: must obtain tissue post-relapse for study eligibility except for brain stem glioma patients
 - **Rationale:** Tumor genomes evolve. To identify potential targets for therapy a “current” relapsed sample is needed

- Most patients screened will be biomarker negative and will not match to a treatment arm

- Inclusion of agents with adult RP2D
NCI-COG Pediatric MATCH
Design Features

- Response rate (tumor regression) will be primary efficacy measure
- Possibility of assignment of patients with non-target-bearing tumors to selected agents that have demonstrated activity in target-bearing tumors
- Evaluation of germline DNA

8-10% with cancer susceptibility mutation in dominant cancer gene (TP53, VHL, MSH2, BRCA1, BRCA2...)

Unselected newly-diagnosed solid tumor patients (n=121)

Parsons DW et al. JAMA Oncol, 2015
Thank you!

seibelnl@mail.nih.gov
ACCELERATING PEDIATRIC DRUG DEVELOPMENT
A FRIENDS OF CANCER RESEARCH FORUM
SUPPORTED BY ST. BALDRICK’S FOUNDATION
Bringing Genomics to the Pediatric Oncology Clinic: The TAPUR Study

Katherine A. Janeway, MD, MMSc
February 21, 2017

Friends of Cancer Research

DANA-FARBER
Boston Children's
CANCER AND BLOOD DISORDERS CENTER
The Significance of Precision Cancer Medicine (PCM)

- Key variants known for only a few pediatric cancers
- Is it possible to extend successes of precision medicine to pediatric cancers where the key variants are not yet known?

2 ½ year old with metastatic inflammatory myofibroblastic tumor with ALK rearrangement

One month of targeted therapy Crizotinib (Alk inhibitor)
Multi-Institution PCM Study in Pediatric Oncology: the iCat1 Study

- Goal: to determine whether it is feasible to identify key gene variants and make an individualized cancer therapy or iCat recommendation using currently available clinical sequencing tests.

Eligibility: High risk extra-cranial solid tumors

iCat recommendation

Expert Panel
The iCat1 Study, Results

- High degree of physician and patient engagement
- Conducting a multi-institution study is feasible
 - 40% patients enrolled from 3 collaborating Institutions
- 30% of patients received an iCat recommendation
- 40% had a result with implications for care
- >90% would participate again (Marron J., PBC, 2016)
The iCat1 Study, Results

- Actionable alterations identified highlight the drug classes where there is a high priority to develop early phase clinical trials with integrated genomic characterization in children with recurrent and refractory solid tumors.

<table>
<thead>
<tr>
<th>Drug class</th>
<th>Targeted genes altered in iCat enrolled pts</th>
<th>N pts with alteration</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDK4/6 inhibitor</td>
<td>CDKN2A/B, CCND1, CDK4, CDK6</td>
<td>11</td>
</tr>
<tr>
<td>BET bromodomain inhibitor</td>
<td>MYC, MYCN</td>
<td>6</td>
</tr>
<tr>
<td>BRAF / MEK / ERK inhibitor</td>
<td>HRAS, NRAS, BRAF</td>
<td>3</td>
</tr>
<tr>
<td>ALK inhibitor</td>
<td>ALK</td>
<td>3</td>
</tr>
<tr>
<td>PARP inhibitor</td>
<td>ATM</td>
<td>2</td>
</tr>
<tr>
<td>FGFR inhibitor</td>
<td>FGFR2, FGFR4</td>
<td>2</td>
</tr>
<tr>
<td>MDM2 inhibitor</td>
<td>MDM2</td>
<td>2</td>
</tr>
<tr>
<td>NTRK inhibitor</td>
<td>NTRK3</td>
<td>1</td>
</tr>
<tr>
<td>PI3K / mTOR inhibitor</td>
<td>PIK3CA</td>
<td>1</td>
</tr>
</tbody>
</table>
Unanswered Questions

1) Impact of receiving matched targeted therapy on outcome
2) Sequencing approach optimal
3) Full spectrum of actionable variants
Cohort Study To Evaluate Outcomes after Receipt of Targeted Therapy Matched to an Individualized Cancer Therapy (iCat) recommendation in Children and Young Adults: The GAIN Consortium/iCat2 Study

- Extracranial solid tumors
 - 800 patients

- Eligibility
 - All: T+N targeted NGS panel
 - Selected: WES and RNA Seq

- Tumor Profiling
 - Clinical Impact
 - Therapy Recommendation
 - Classify drug availability

- Curation
 - Clinical interpretation
 - Vital Status
 - Treatment Response
 - Follow-up

- GAIN Genomic Assessment Informs Novel Therapy Consortium
 - Boston Children’s Hospital
 - Children’s Hospital at Montefiore
 - Children’s Hospital of Philadelphia
 - Children’s National Medical Center
 - Columbia University Medical Center
 - Dana-Farber Cancer Institute
 - Huntsman Cancer Institute, University of Utah
 - Nationwide Children’s Hospital
 - Seattle Children’s Hospital
 - UCSF Benioff Children’s Hospital
 - University of Chicago Comer Children’s Hospital
 - Children’s Hospital Colorado
 - UT Southwestern Medical Center
GAIN/iCat2 Primary Objectives

- Describe OS, PFS in each group
- Identify factors associated with outcome
- Bank

HOWEVER
The iCat1 Study, Results

• 3 of 31 received targeted therapy matched to the iCat recommendation
 o Reasons matched therapy (MTT) not received assessed by survey
 • Clinical trial not available: completed accrual or patient ineligible
 • Clinical status: patient in second remission or disease too advanced or deceased

• Similar results in Mody et al., JAMA, 2015
Targeted Agent and Profiling Utilization Registry (TAPUR) Study

February 21, 2017

Slides credit: Pam Mangat, MS, ASCO
Problems

- Patient with advanced cancer; no standard treatment options
- Genomic profile test performed
- Potentially actionable aberration detected
- FDA-approved drug available for aberration

How to get the drug that might be beneficial?
How to learn from the treatment?
Overall Goals of TAPUR

• To learn from the real world practice of prescribing targeted therapies to patients with advanced cancer whose tumor harbors a genomic variant known to be a drug target, or to predict sensitivity to a drug

• To educate oncologists about implementation of precision medicine in clinical practice
Who Benefits?

• **Patients** receive targeted agent matched to molecular profile – broader eligibility criteria

• **Physicians** receive interpretation of molecular test results, guidance in treatment recommendations, access to drugs, clinical data on off-label use

• **Industry** receives data on drug use and outcomes to inform R&D plans and life cycle management

• **Oncology Community** receives data on extent and outcomes of off label drug and test use and real world safety data
Eligibility

- Patients with advanced solid tumors, multiple myeloma or B cell non-Hodgkin lymphoma for which standard treatment options are no longer available and acceptable performance status and organ function
TAPUR Study Primary Objective

• To describe the anti-tumor activity and toxicity of commercially available, targeted anti-cancer drugs prescribed for treatment of patients whose tumors have a genomic variant known to be a drug target, or to predict sensitivity to a drug.
Study Endpoints and Analysis

• Primary endpoint: ORR or SD at 16 weeks per relevant response criteria
• Other endpoints: PFS, OS, time on treatment, grade 3-5 AEs per CTCAE, SAEs
• Each tumor type-variant-drug is a “group”
• Enroll 10 patients/group. If 1 or fewer responses, stop
• If at least 2 responses, enroll additional 18
• 7 or more responses/28, further study
• 85% power and an alpha error rate of 10%
How does TAPUR work?

A patient’s treating physician has results of a genomic profile of the patient’s tumor and determines that a study drug may benefit the patient.

The patient decides to participate in TAPUR and gives informed consent.

The Molecular Tumor Board—a group of experts convened by ASCO—is available for consult regarding the proposed treatment or to provide alternate treatment options.

A participating pharmaceutical company provides the study drug at no cost to the patient.

The patient is followed for standard toxicity and efficacy outcomes and data are collected for analysis.

The study’s Data and Safety Monitoring Board reviews results and determines whether a treatment is promising for a particular cancer and genomic variant.

ASCO publishes study findings in peer reviewed journals to inform clinical practice and future research.
Key Milestones

• Seven companies currently committed to participate
 – **Providing free drug** (ongoing access for responders)
 – **Per-case payment**
 – **Infrastructure support**

• FDA reviewed and determined TAPUR Study IND-exempt *(08/31/15)*

• Chesapeake Institutional Review Board approval *(02/09/16)*

• **TAPUR Study Launch** *(03/14/16)*
 – 317 participants registered as of 02/20/17
 – 175 patients on treatment as of 02/20/17
TAPUR Study Eligibility Criteria

• Overall goal for TAPUR participants to be more representative of the overall patient population

• Two sets of eligibility criteria:
 – General study eligibility criteria
 • Apply at outset
 – Drug-specific eligibility criteria
 • Specific to each drug & take precedence
 • Provided by the pharmaceutical companies
TAPUR Study: Other Considerations

- Organ function
- No exclusion for prior malignancy
- Performance Status 0-2
- Pediatric Population:
 - Current TAPUR study eligibility criteria requires that the patient is ≥ 18 years old
 - Lowering minimum age to 12 years
 - Any drug with dosing information available
Clinical Sites:

...and growing!
PCM Trials Pediatric Oncology

<table>
<thead>
<tr>
<th>Trial Design</th>
<th>Summary</th>
<th>Pediatric Oncology Examples (USA)</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
</table>
| Studies of Molecular Profiling Clinical Utility | - Frequency of alterations
- Assess feasibility sequencing | - iCat1
- BASIC3
- MiOncoSeq | Foundation for subsequent studies | Does not assess impact on outcome |
| Longitudinal Cohort | - Collaborative
- Prospective collection genomic, treatment and outcome data | - PROFILE
- GAIN consortium/ iCat2 Study
- G4K (Genomes for Kids) | - Provide access to profiling
- Supplement pediatric sequencing databanks (recurrent samples)
- Facilitate basket trial design
- Assess impact MTT on outcome | Doesn’t address access to MTT |
| Basket Trial | - Histology independent
- Treatment arms defined by genotype
- Typically phase II | Pediatric MATCH | Identifies histology-specific signals of activity \rightarrow phase II/III | Significantly different activity by histology \rightarrow risk missed signal of activity |
| Master-Protocol | - Single disease
- Multiple treatment arms by genotype
- Typically phase II | NEPENTHE | Increased likelihood patient receiving tailored therapy | Requires understanding genomic subtypes of disease |

Adapted from Martine J. Piccart-Gebhart, D. Zardavas “Clinical Trials of Precision Medicine through Molecular Profiling”, ASCO Ed Session, 2015
Trials (MATCH)
Acknowledgements

Boston Children’s / pathology and molecular pathology
Marian Harri
Alanna Church
Mark Fleming

Dana-Farber/Boston Children’s / cancer biology, DVL
Brian Crompton, MD
Lisa Diller, MD
Suzanne Shusterman, MD
Kimberly Stegmaier, MD
Steven Dubois, MD, MS
Jon Marron, MD
Staff: Catherine Clinton, Erin Parker, Stephanie Meyer, Giana Strand, Abigail Ward, Alma Imamivoc-Turco, Alex Lee;
 research coordinators, computational biology
Former members: Carlos Rodriguez-Galindo, MD, Charlie Roberts, MD, PhD

Dana-Farber Cancer Institute
Barrett Rollins, MD, PhD
Laura MacConaill, PhD
Eli VanAllen, MD, PhD
Ethan Cerami, PhD,

TAPUR:
Navin Pinto, Seattle Children’s
Richard Schilsky, ASCO
Pam Mangat, ASCO

Brigham and Women’s Hospital
Neal Lindeman, MD

Collaborators:
Columbia University Medical Center: Julia Glade-Bender, MD and Andrew Kung
Children’s National Medical Center: AeRang Kim, MD, PhD
University of Chicago: Sam Volchenboum, Kenan Onel
UT Southwestern: Ted Laetsch
Seattle Children’s: Navin Pinto, Julie Park
CHOP: Rochelle Bagatell
Montefiore: Jonathan Gil
Children’s Hospital Colorado: Meg Macy
UCSF: Amit Sabnis
Utah Huntsman Cancer Center: Joshua Schiffman, Luke Maese

PATIENTS AND FAMILIES!

Funders:

iCat1 Funding:
 Friends for Life Foundation
 Hyundai Hope on Wheels
 Gillmore Fund

GAIN Funding:
 Division Hematology-Oncology Consortium
 Funding
 Medel Fund
 C&S Grocers
Master Protocols for Early Signal-Seeking: iMATRIX

Raphaël F. Rousseau, M.D., Ph.D.
Global Head, Pediatric Oncology (iPODD)
Genentech, a member of the Roche Group
Disclaimer

Some comments & views expressed in this presentation are endorsed by Roche, Genentech and affiliated parties but may not be by other pharmaceutical industry partners
Presentation Outline

- Challenges in Pediatric Oncology Drug Development
- Mechanism-of-Action Based Drug Development in Pediatric Oncology
- The iMATRIX Trial Concept and Its Master Protocol
- Opportunities & Challenges
Children with cancer also need access to new and more efficacious therapeutic options

Challenges

- High attrition rate in adult drug development contributes to lack of early access to investigational drugs.
- Pediatric oncology drug development is largely based on adult drug development programs. The majority of pediatric tumors are rare and distinct entities from those seen in adults.
- Multiple programs compete for a limited patient pool and for academic collaborators.
- Reactive obligatory vs proactive approach based on patients’ needs.
- Limited market incentives.

Opportunities

- Leverage pediatric expertise.
- Match and prioritize molecules for pediatric cancers based on target or mechanism of action of the drug.
- Identify new targets in pediatric cancer.
- Increase efficiencies with innovative trial designs.
- Greater multi-stakeholder collaboration and sharing of information.
Mechanism of action or target-based drug development in pediatric oncology

• Target-based drug development has largely benefited adult oncology patients. Drug development in children need to keep pace with advances in science

• Adjust the focus of pediatric oncology drug development to the many pediatric diseases for which there are no adult counterparts, rather than exclusively on the tumor types being investigated in adults

• Limit initial plan proposals to phase 1/2 clinical research, and defer discussion of pivotal trials until early-phase pediatric data is available

• Greater cooperation and collaboration between stakeholders to prioritize new molecules based on mechanism of action or target of the drug

• Standardize targeted approaches to ensure consistent interpretation by health authorities and industry for widespread adoption and sustainability

• Ultimately, preserve and match children with rare tumors to the most promising therapies

Preclinical pediatric prioritization by matching molecule MOA with pediatric tumor biology

- Clinical target patterns
- Molecular Target Validation (in vitro)
- Molecular Target Validation (in vivo)
- Compound Efficacy (in vitro)
- Compound Efficacy (in vivo)
- Biomarker Predictive
- Resistance Mechanisms
- Combination
- Safety in children (phase 1 trials)
- Efficacy in children (phase 2 trials)
- Efficacy in SOC (phase 3 trials)

Pediatric Potential

Pediatric Tumor Biology

Target Actionability

- Systematic Literature Reviews of Target Actionability
- ‘In Silico’ Target Patterns in Pediatric Clinical Series
- Preclinical Proof-of-Concept Molecule Testing in Pediatric Models
The iMATRIX trial concept: preserve and match children with rare tumors to the most promising therapies

An innovative pediatric oncology clinical trial platform to investigate several drugs in multiple tumor types

The iMATRIX trial concept: preserve and match children with rare tumors to the most promising therapies
The ultimate goal is to allow for molecule & disease prioritization within the regulatory framework

<table>
<thead>
<tr>
<th>Disease</th>
<th>Molecule</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>x</td>
<td>✓</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>N/A</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>D</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>E</td>
<td>✓</td>
<td>x</td>
<td>N/A</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Objective: one sponsored label-enabling study per molecule in the most relevant disease supported by clinical evidence and feasibility assessment (extensive consultation with Academic Community and HAs). Further label updates using additional data generated from supported research.
iMATRIX trial status update

rapid accrual across a number of pediatric tumor types

- **Single molecule clinical studies** for atezolizumab and cobimetinib in several pediatric cancer tumor types have been initiated

- **Master Trial proposal** has been evaluated by the FDA and EMA
 - Joint FDA and EMA *Parallel Scientific Advice* and EMA Qualification procedure meeting on 31st August, 2016
 - Endorsement from the agencies (subject to review) to continue with the iMATRIX Trial efforts

- **Outreach Efforts for future Multi-Sponsor Master Trial** collaborations to enable industry to fulfill its mission of addressing unmet need for children with cancer and to provide rare patients with the most promising therapies
iMATRIX Master Protocol

An open-label, multi-center, Phase I/II Study, to evaluate the PK, safety, tolerability and efficacy of drugs in the treatment of relapsed or refractory pediatric tumors with known or expected pathway involvement

Study 1
iMATRIX Master IND/CTA

Master Protocol + Drug A

- Drug B appendix
- Drug C appendix
- Drug D appendix
- Drug “n” appendix

IND/CTA amendments to add or remove drugs

Study 2
New IND/CTA for Pivotal Study(ies)

Best molecule: tumor match
The iMATRIX trial and its master protocol
an ongoing experiment with obvious opportunities... and some remaining challenges

Challenges

- New concept for national HAs and IRBs, lack of centralized review process may impact review timelines
- Current EU regulatory framework is not able to accommodate a Master protocol under a single CTA
- Combinations may require separate IND/CTA
- Operational benefits may only be seen when a critical number of molecules are available on the iMATRIX
- Ultimately, actionable molecular targets may be rarer in children compared to adults, limiting the impact of predictive biomarkers

Opportunities

- Target true unmet needs in childhood cancer
- Evidence-based identification of optimal tumor type(s) for each molecule
- Consistency of data collection, analysis, and interpretation
- Operational efficiency of trial conduct: same sites, accelerated implementation, optimization of costs
- Ultimately, provide a standardized framework for patient-centric development that preserves study participants and matches children with rare cancer to the most promising therapies across industry’s portfolio
Paradigm shifts are urgently needed in pediatric drug development

<table>
<thead>
<tr>
<th>Isolated development</th>
<th>Harmonized across industry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactive, late</td>
<td>Proactive, early</td>
</tr>
<tr>
<td>“Stick and carrot”</td>
<td>Pediatric-centric</td>
</tr>
<tr>
<td>Molecule-based in disease context</td>
<td>Mechanistic, biomarker-based in disease and molecule context</td>
</tr>
</tbody>
</table>
Doing Now What Patients Need Next
ACCELERATING PEDIATRIC DRUG DEVELOPMENT
A FRIENDS OF CANCER RESEARCH FORUM

SUPPORTED BY ST. BALDRICK’S FOUNDATION
ESMART and the European strategy

Gilles Vassal
Friends of Cancer Research
February 21st, 2017
An European academic consortium created in 2003

- ITCC runs a comprehensive clinical and biological early evaluation program of anticancer drugs for children and adolescents.
- 52 investigating centers in 13 countries
 - Of which 20 centers qualified for FIC and early phase trials
- 4,500 new patients, yearly.
- 22 basic and translational research labs
The Innovative Therapies & PCM Programme

1. A tumor molecular and Immunology portrait at relapse
 Molecular Matching Trials
 WES, RNAseq, immuno

2. Enriched Phase I and II Trials w single agents and combinations
 Targeted and immune therapies

3. New Knowledge
 Clinico-Biological Data

All patients are proposed access to new drugs

http://www.siope.eu/SIOPE_StrategicPlan2015/
MOlecular Screening for CAncer Treatment Optimization (MOSCATO-01) NCT01566019
PI: Jean-Charles Soria, Birgit Geerger

Pediatric Cohort:
73 patients with solid tumors
Median age 11y (0.8-24.3y)
Biopsy at relapse
NGS/CGHa – WES/RNAseq
Within 21 days
58% of patients had at least 1 actionable target of which only 33% received a matched treatment
Main reason: drug not available

* 1036 patients in adult cohort
The ITCC Precision Cancer Medicine program

1. Generate molecular profiling for each patient

Molecular Matching Trials at relapse

- **INFORM** (Germany)
- **MAPPYACTS** (France, Spain, Denmark, Italy)
- **iTHER** (Netherland)
- **SM-PAED** (UK)

- WES, RNA seq, methylome, immunophenotype
- Platform, pipelines and data harmonization

Goal
1000 exomes at relapse
By 2018
Patient with tumor molecular profile at relapse (WES, RNAseq, Immuno)

MATCH

AcSé
European Proof-of-Concept Therapeutic Stratification Trial of Molecular Anomalies in Relapsed or Refractory Tumors in children (ESMART)

eSMART

IST - phase I/II
single agent and combo

Goal >10 drugs from >3 Companies

A trial platform to be amended

ITCC portfolio
Ongoing phase I/II trials
single agent and combination

<table>
<thead>
<tr>
<th>Trial</th>
<th>IMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITCC-022</td>
<td>Nilotinib</td>
</tr>
<tr>
<td>ITCC-032</td>
<td>Bevacizumab</td>
</tr>
<tr>
<td>ITCC-041</td>
<td>Ceritinib</td>
</tr>
<tr>
<td>ITCC-038</td>
<td>Abraxane</td>
</tr>
<tr>
<td>ITCC-043</td>
<td>Azacytidine</td>
</tr>
<tr>
<td>ITCC-047</td>
<td>Regorafenib</td>
</tr>
<tr>
<td>ITCC-049</td>
<td>Afatinib</td>
</tr>
<tr>
<td>ITCC-050</td>
<td>Lenvatinib</td>
</tr>
<tr>
<td>ITCC-053</td>
<td>Crizotinib</td>
</tr>
<tr>
<td>ITCC-054</td>
<td>Everolimus, Dasatinib, Erlotinib</td>
</tr>
<tr>
<td>ITCC-055</td>
<td>Comibetinib</td>
</tr>
<tr>
<td>ITCC-058</td>
<td>Atezolizumab</td>
</tr>
<tr>
<td>ITCC-059</td>
<td>Inotuzumab</td>
</tr>
<tr>
<td>ITCC-061</td>
<td>EPZ 6438</td>
</tr>
<tr>
<td>ITCC-065</td>
<td>Ibrutinib</td>
</tr>
</tbody>
</table>

Mainly first in child

Lanched August 2016
Main Inclusion Criteria:
- Patients < 18 years with a relapsed or refractory malignancy (solid tumors, leukemias)
- Evaluable disease
- Lansky/Karnofsky ≥70%
- No toxicity ≥ G2
- Deep tumor molecular analysis available

WAVE 1 of Treatments

<table>
<thead>
<tr>
<th>ARM</th>
<th>Pathway</th>
<th>Target</th>
<th>Treatment</th>
<th>Enrichment</th>
<th>Pharma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arm A</td>
<td>Cell Cycle</td>
<td>CDK4/6</td>
<td>Ribociclib + TOTEM*</td>
<td>50%</td>
<td>[Image]</td>
</tr>
<tr>
<td>Arm B</td>
<td></td>
<td></td>
<td>Ribociclib + Everolimus</td>
<td>50%</td>
<td></td>
</tr>
<tr>
<td>Arm C</td>
<td>DNA repair</td>
<td>WEE1</td>
<td>AZD1775 + Carboplatin</td>
<td>50%</td>
<td>[Image]</td>
</tr>
<tr>
<td>Arm D</td>
<td></td>
<td>PARP</td>
<td>Olaparib + Irinotecan</td>
<td>50%</td>
<td>[Image]</td>
</tr>
<tr>
<td>Arm E</td>
<td>PI3K/AKT/mTOR</td>
<td>mTORC1/</td>
<td>AZD2014</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TORC2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arm F</td>
<td></td>
<td></td>
<td>AZD2014 + TOTEM*</td>
<td>50%</td>
<td>[Image]</td>
</tr>
<tr>
<td>Arm G</td>
<td>Immune checkpoints</td>
<td>PD1</td>
<td>Nvolumab + Cyclophosphamide +/-RT***</td>
<td>NA</td>
<td>[Image]</td>
</tr>
</tbody>
</table>

* topotecan + temozolomide; ** cyclophosphamide; *** radiotherapy
AcSé-ESMART statistical design

- Each arm is run independently (6-38 patients/arm)
- 2 parts: Phase I et Phase II
 - Evaluation of safety (DLT, MTD, RP2D) AND activity
 - 200 à 285 evaluable patients in 3 years
 - IDMC (1 pediatric oncologist, 1 medical oncologist, 1 pharmacovigilant, 1 statistician)

As of February 2017:
31 patients enrolled in 6 months
The ITCC Precision Cancer Medicine program

1. Generate molecular profiling for each patient

Molecular Matching Trials at relapse

- INFORM (Germany)
- MAPPYACTS (France, Spain, Denmark, Italy)
- iTHER (Netherland)
- SM-PAED (UK)

2. MATCH

3. Evaluate drugs and combinations

Phase 1 & 2 ITCC Trials
(sponsored by industry and ISTs)

- MATRIX trial (Genentech/Roche)

- eSMART trial
IST multi-agent from multi-company

- AcSé

4. Create

European clinico–biological database

- WES, RNA-seq, methylome immunophenotype

5. New knowledge

- New knowledge

- 1000 exomes in relapse

- New druggable pathways for specific pediatric drug development
The ITCC strategy is aiming at:

• Speeding up access to innovation at relapse and frontline for children and adolescents with cancer
• Evaluating new agents and combinations in an enriched and well molecularly characterized population
• Signal searching for further developments (PIPs)
• Generating large data set and new knowledge
Thanks

• Patients and their Parents
• PIs, investigators and molecular profiling teams

• Pharmaceutical companies
ACCELERATING PEDIATRIC DRUG DEVELOPMENT
A FRIENDS OF CANCER RESEARCH FORUM

SUPPORTED BY ST. BALDRICK’S FOUNDATION
Pediatric Cancer Drug Development: U.S. Regulatory Considerations

Gregory Reaman, M.D.
Associate Director, Office of Hematology and Oncology Drug Products
Center for Drug Evaluation and Research
US FDA
FDA Advisory Committee Consensus Statement

• **Pediatric** oncology drug development should generally be *coordinated* with oncology drug development for *adults*, as part of an *overall drug development plan*

Priority Setting
• The evidence burden for initiating clinical studies in children with cancer should include **biological plausibility of the product having activity against a pediatric tumor** (which could be obtained from preclinical data), some expectation of potential benefit, a reasonable expectation of safety, and **sufficient information to choose an appropriate starting dose.**

MOA and RP2D
• Current practice would recommend that if a scientific rationale and a population of pediatric cancer patients with no available anti-cancer therapy exist, then **pediatric oncology clinical studies will be initiated, in most cases, immediately following adult Phase I studies.**
Challenges and Opportunities in Pediatric Oncology

Opportunities

- **Scientific Discovery**
 - Molecular drivers/validated targets
 - Available targeted therapies/immunotherapies

- **Infrastructure**
 - Clinical trial networks
 - Investigator/Patient/Family Engagement
 - Advocacy organizations

- **Technology/Big Data**

- **Evolving drug development paradigm**

- **Emerging biomarkers**
 - CTCs, ctDNA

- **Leveraging Adult Discovery**

Challenges

- **Low Incidence**
- **Heterogeneity**
 - Disease
 - Developmental
 - Genomic signature

- **Formulation requirements**
- **Preclinical model/testing limitations**
- **Financial**
- **Combination drug development needed**
Approaches to Pediatric Oncology Drug Development

• Use of current approaches continue but innovation, streamlining required

• New approaches needed: Evolving Drug Development Paradigm
 – increasing knowledge of genomic basis and heterogeneity of pediatric cancers
 – emergence of targeted therapies demonstrating large treatment effects in small subsets – “personalized medicine”
 – compressed drug development timelines in adults with innovative designs
 – limited patient, stakeholder resources
FDA Initiatives

• Increased role in promoting collaborative approach to timely pediatric drug development

• Optimizing regulatory authority

• Proactive identification of promising new treatments and engagement with industry/academia/advocacy groups to study these products earlier

• Harnessing regulatory science to meet drug development challenges
Leveraging Adult Discovery and Development: The Legislation
Pediatric Research Equity Act (PREA)

- Authorizes FDA to **require** pediatric assessments
- Triggered by NDA/BLA submission or a supplement with a new indication, active ingredient, dosage form, dose regimen or route of administration
- **Applies only to indication(s) included in the submission**
- Drugs with Orphan Designation are exempted from PREA
- FDA can grant full or partial waiver or deferral for pediatric studies if specific criteria are met
- **No relevance to Pediatric Cancer**

Best Pharmaceuticals for Children Act (BPCA)

• Provides a financial incentive to companies to voluntarily conduct pediatric studies under a Pediatric Written Request (WR)

• A sponsor may request the FDA to issue a WR by submission of a Proposed Pediatric Study Request (PPSR) or FDA may issue WR without PPSR

• PPSR should contain rationale for studies, detailed study designs and plans for formulation development
PREA and BPCA Programs

PREA
- Drugs and biologics
- Mandatory studies
- Requires studies only on indication(s) under review
- Orphan indications exempt from studies
- Pediatric studies must be labeled

BPCA
- Drugs and biologics
- Voluntary studies
- Studies relate to entire moiety and may expand indications
- Studies may be requested for orphan indications
- Pediatric studies must be labeled
BPCA: Written Request (WR)

• Considerations when reviewing a PPSR for a potential WR
 – What is the public health benefit?
 – Are the study designs feasible; sufficient to support dosing, safety and efficacy?
 – Have all populations and conditions been addressed?
 – Are there other products already approved for the condition?
 – **WRs can be issued EARLY**
 – **WRs can be amended**: Emerging results may impact pediatric development plan
Selecting candidate therapies for WRs

- **Mechanism of action** suggests potential for activity
- Scientific rationale exists for the drug to be evaluated in pediatric cancers
- Activity in preclinical models of pediatric cancers
- Efficacy has been shown in a related adult cancer
- Evidence that the therapy will have similar efficacy and reduced toxicity compared to existing therapy
- Has potential to improve a clinical outcome for the pediatric patient
Shortening the timeline for development of drugs for pediatric cancers

• More efficient dose-finding studies (rolling six; continuous reassessment model), modeling and allometric scaling
• Adult RP2D when no adult MTD
• Expanding FIP study sites- improved patient access
• Innovative trial designs/ development strategies
 – Embedding pediatric trials in adult studies
 – Adaptive design – with disease cohorts
 – Master protocols
 – Histology-agnostic development
• Including pediatric cohort on select FIH trials
• Enrolling adolescents (children) on relevant disease-specific trials
Characteristics of an Ideal Master Protocol

- One protocol
- Central governance structure
- Central IRB
- Central DMC
- Central Independent Review Committee
- Central repository of data and specimens

- Study multiple drugs
 - Targeting more than one marker/tumor
 - More than one drug for one marker/tumor
- Study multiple markers
 - Overlapping expression of markers
- Leverage common control group(s)
- Flexibility to add/remove agents (Adaptive)
Promoting expedited development of new drugs for pediatric cancers

- BPCA Pediatric Oncology Working Group holds quarterly meetings with representatives of the academic community to discuss promising new agents for pediatric evaluation through the WR mechanism.

- OPT coordinates a monthly Pediatric Cluster meeting with international regulators for information exchange and discussion of specific product development, safety concerns and general scientific issues to assure alignment of pediatric development plans: PSPs, WRs and PIPs.
Pediatric Subcommittee of the Oncologic Drugs Advisory Committee (ODAC)

- Forum where industry sponsors can obtain input from key academic and community opinion leaders regarding an ongoing or potential pediatric development program
 - gauge investigator interest in exploring pediatric development programs for products in various stages of adult development
 - select possible drug candidates for a Written Request
 - provide feedback to industry on trial design, pediatric regulations
 - Interactive discussion of a key topic in designing trials for pediatric patients with cancer

- Ideal to come early in drug development timeline even prior to NDA submissions

- Sponsors are encouraged to seek an invitation if there are questions regarding or interest in a pediatric development program
Expanding the Authority of PREA

• Indication-based trigger to MOA-based

• Requiring pediatric studies based on known molecular mechanism of action could significantly increase the number of pediatric studies under PREA

• Proposed PREA amendment to require that certain drugs (including biologic agents) developed for adult cancer indications be evaluated for a pediatric cancer indication when there is evidence that the drug affects specific molecular targets and/or molecular mechanisms that are common to both adult and pediatric tumors
Addressing the Challenge of New Drug Development when No Adult Indication Exists

- No current legislative fix
- Meaningful and early incentives to industry require evaluation
- Continued success of current special initiatives (Pediatric Rare Disease Priority Review Vouchers) – subject to dilution of benefit and competing priority review mechanisms/”early” development incentive lacking – reauthorization uncertainties
- Public/Private Partnerships – Role of NCI and other funding bodies
- Orphan Drug Act
Orphan Drug Act 1983

- Promote development of products for rare diseases (<200,000 persons in US)
- Designation: Prevalence/Promising clinical efficacy
- Financial incentives
 - PDUFA exemption ($2.4 M FY’16)
 - 50% tax credit for clinical study costs
 - Orphan grant program eligibility $14M/yr
 - 7 years marketing exclusivity
- 1/3 of all NMEs and 2/3 of all BLAs have designation
- Same approval standards for safety and effectiveness, but regulatory flexibility and “scientific judgment”
- Substantial clinical trial design diversity
Future Direction

• Maximize Regulatory Authority
 – Aid in Legislative amendments when warranted
 – Expand opportunities for evaluating Precision Medicine approaches
 – Paradigm shifts in study design, conduct, initiation, and F/U
 – Optimize Orphan Drug Product Act opportunities
 – Rational science-based strategy for prioritizing which/when new products to test in what diseases; successful integration with “standard” therapy
ACCELERATING PEDIATRIC DRUG DEVELOPMENT

A FRIENDS OF CANCER RESEARCH FORUM

SUPPORTED BY ST. BALDRICK’S FOUNDATION
Real World Experience from the Trenches

Raymond Rodriguez-Torres

Live Like Bella Childhood Cancer Foundation
15 Minute Break
ACCELERATING PEDIATRIC DRUG DEVELOPMENT
A FRIENDS OF CANCER RESEARCH FORUM

SUPPORTED BY ST. BALDRICK’S FOUNDATION
Session 2: Considerations for Pediatric Master Protocols

Moderator: Peter Adamson, Children’s Hospital of Philadelphia

Trial Design and Molecular Prioritization Criteria in Multi-Sponsor Trials
Discussants: Bouchra Benettaib (Celgene), Kenan Onel (Northwell Health), Eric Rubin (Merck)

Role of a Multi-Stakeholder Decision-Making Body and Governance
Discussants: Shakuntala Malik (NCI), Pam Mangat (ASCO)

Logistical and Operational Considerations/Challenges
Discussants: Kenneth Cohen (Johns Hopkins), Giles Robinson (St. Jude)

Fulfilling Regional Pediatric Drug Regulations and Addressing Globalization Challenges
Discussants: Martha Donoghue (FDA), Tahira Khan (Genentech), Gilles Vassal (Gustave Roussy)
Closing Remarks

Jeff Allen
President and CEO, Friends of Cancer Research