Supported by:

American Association for Cancer Research
American Society of Clinical Oncology
Susan G. Komen
GLOBAL HARMONIZATION OF DRUG DEVELOPMENT
Richard Pazdur, MD; FDA OCE
Prudence Scott, MD; Medex Consulting
Francesco Pignatti, MD; EMA
FRIENDS ANNUAL MEETING

LISA LaVANGE, PhD
FDA
Panelists

- Lisa LaVange, PhD; FDA
- Eric Kowack, MS, MBA; Ignyta
- Amy McKee, MD; FDA
- Cyrus Mehta, PhD; Cytel
- Richard Simon, D.Sc; NCI
- Rajeshwari Sridhara, PhD; FDA
- Yanping Wang, PhD; Eli Lilly & Co.
Optimization of Exploratory Randomized Trials

Lisa M. LaVange, PhD
Director, Office of Biostatistics
CDER, FDA

Friends of Cancer Research Annual Meeting
November 16, 2016
Background

• Recent oncology research → new, highly effective therapies
 – May show large treatment effects early in development
 – Need to speed these new therapies to market while also ensuring sufficient rigor to allow regulatory scrutiny

• Specific challenges include:
 – Lack of planning in certain aspects of the trial can make results difficult to interpret, e.g., multiple looks at the data, multiple endpoints
 – Early evidence of effect may be seen in secondary endpoints, e.g., overall survival
 – Results can negatively impact ability of the next, larger pivotal trial to enroll
Session Objectives

• Better understand the problem through some recent examples
 – Focus is on early randomized trials designed to inform sponsors on a go/no-go decision
 – Options in reaction to exceptional results include trial expansion to determine if benefit is maintained or submission of data while possibly initiating pivotal trial

• Discuss options for FDA in interpreting early trial results
 – Are there statistical methods that can be applied post hoc to alleviate problems incurred with looser/unknown operating characteristics of early trials?

• Discuss options for sponsors to better plan for the possibility of exciting results in early trials
 – With care to not impede research by placing too many requirements on early trials
FRIENDS ANNUAL MEETING

AMY MCKEE, MD
FDA
Go/No-go Trials Supporting Approval: Case Studies

Amy McKee, M.D.
Deputy Office Director (acting)
Office of Hematology and Oncology Products
OND/CDER/FDA
Issue

• Small, activity-estimating, randomized trial reads out with unexpected results, perhaps in secondary endpoint

• Statistical plan written with less restrictive operating characteristics typical of phase 2 trial

• Regulatory conundrum: what to do with a marketing application based on this type of trial?
Case study #1: Olaratumab (Lartruvo™)

• Human Anti-PDGFRα Monoclonal Antibody
• Small, randomized phase 1b/2 trial (JGDG)
 – Phase 2 portion randomized as add-on versus standard therapy in first-line setting
 – 133 patients with advanced STS not amenable to curative surgery/radiation
 – Primary endpoint: PFS (2-sided alpha=0.2)
 • Secondary endpoint: OS
JGDG Trial Design

130 Patients with Advanced STS

Randomize 1:1

1° endpoint: PFS

Stratification factors:
PDGFR-α expression
Prior lines of treatment
Histology
ECOG PS

Olaratumab 15 mg/kg day 1 & 8
Doxorubicin 75 mg/m² day 1

Treat x 8 21-day cycles

Olaratumab 15 mg/kg day 1 & 8

Disease evaluations:
every 6 weeks x 4
then every 12 weeks

Doxorubicin 75 mg/m² day 1

Treat x 8 21-day cycles
Case study #1: Olaratumab (Lartruvo™)

![Graph showing survival analysis with CTL and Exp treatments with Logrank p=0.0017]
Case study #1: Olaratumab (Lartruvo™)

<table>
<thead>
<tr>
<th></th>
<th>Olaratumab + Doxorubicin N=66</th>
<th>Doxorubicin N=67</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (months)</td>
<td>6.6 months [95% CI: 4.1, 8.3]</td>
<td>4.1 months [95% CI: 2.8, 5.4]</td>
<td></td>
</tr>
<tr>
<td>Hazard Ratio</td>
<td>0.67</td>
<td></td>
<td>0.06*</td>
</tr>
<tr>
<td>OS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (months)</td>
<td>26.5 months [95% CI: 20.9, 31.7]</td>
<td>14.7 months [95% CI: 9.2, 17.1]</td>
<td></td>
</tr>
<tr>
<td>Hazard Ratio</td>
<td>0.46</td>
<td></td>
<td>0.0004</td>
</tr>
</tbody>
</table>

2-sided alpha=0.1999
Case study #2: Lenvatinib (Lenvima®)

• Small molecule tyrosine kinase inhibitor against VEGFR1, VEGFR2 and VEGFR3

• Small, randomized phase 1b/2 trial
 – Phase 2 portion randomized 1:1:1 to lenvatinib + everolimus, everolimus alone, or lenvatinib alone
 – 153 patients with renal cell carcinoma in second-line setting
 – Primary endpoint: PFS
 • Secondary endpoint: OS
Trial Design

Stratification factors:
- Hemoglobin
- Corrected serum calcium

150 Patients with Advanced STS

Randomize 1:1:1

- Lenvatinib 24 mg daily + Everolimus 5 mg daily
- Everolimus 10 mg daily
- Lenvatinib 24 mg daily

Disease evaluations:
every 8 weeks

Treat to PD, unacceptable toxicity, consent withdrawal

1° endpoint:
PFS
Case study #2: Lenvatinib (Lenvima®)
Case study #2: Lenvatinib (Lenvima®)

<table>
<thead>
<tr>
<th></th>
<th>Lenvatinib + Everolimus N=51</th>
<th>Everolimus alone N=50</th>
<th>Lenvatinib alone N=52</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>14.6 months</td>
<td>5.5 months</td>
<td>7.4 months</td>
</tr>
<tr>
<td>Hazard Ratio vs evero alone</td>
<td>0.37* [95% CI: 0.22, 0.62]</td>
<td>0.57* [95% CI: 0.36, 0.91]</td>
<td></td>
</tr>
<tr>
<td>OS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>25.5 months</td>
<td>15.4 months</td>
<td>19.1 months</td>
</tr>
<tr>
<td>Hazard Ratio vs evero alone</td>
<td>0.67* [95% CI: 0.42, 1.08]</td>
<td>0.80* [95% CI: 0.50, 1.27]</td>
<td></td>
</tr>
</tbody>
</table>

p-values uninterpretable due to lack of pre-specified multiplicity adjustment
Conclusions

• Both olaratumab and lenvatinib received approval

• How can we prospectively design Phase 2 trials potentially to be both go/no-go and registration trials?
FRIENDS ANNUAL MEETING

RICHARD SIMON, D.Sc
NCI
Bayesian analysis of unexpected survival “significance” in a randomized phase II trial

Richard Simon, D.Sc.
Many phase II trials are randomized because:

- New drug is combined with standard regimen
- Evaluation of progression free survival requires control group
- Toxicity better assessed with control group
Differences Between Phase III and Randomized Phase II

<table>
<thead>
<tr>
<th></th>
<th>Phase II</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary endpoint</td>
<td>Progression-free survival</td>
<td>Survival</td>
</tr>
<tr>
<td></td>
<td>Response rate</td>
<td></td>
</tr>
<tr>
<td>Sample size</td>
<td>Small - moderate</td>
<td>Large</td>
</tr>
<tr>
<td>Significance threshold</td>
<td>0.10 1-sided</td>
<td>0.05 2-sided</td>
</tr>
<tr>
<td>Analysis</td>
<td>Not-blinded</td>
<td>Blinded</td>
</tr>
<tr>
<td>Analysis plan</td>
<td>Flexible</td>
<td>Pre-specified</td>
</tr>
</tbody>
</table>
Surprises in RCT Outcomes

- Treatment difference for secondary endpoint
 - When OS is the secondary endpoint

- Treatment difference for subset of patients when there is no overall difference

- Treatment difference for a subset of clinical centers

- Un-expected serious toxicity from a list of examined toxicities
Some Problems With p Values for Data-driven Hypotheses

- The interpretation of p value as false-positive error requires pre-specification of hypothesis

- Proper calculation of p value depends on sampling plan which may have been flexible or data driven; not fixed sample size as assumed

- Same p value calculation for primary as for 10 secondary hypotheses. Only way of penalizing is by multiplicity correction.
Some Problems With p Values for Data-driven Hypotheses

- Based on null hypothesis of no treatment effect; does not reflect clinical significance
Why a Bayesian Model?

- Depends on data at analysis, not on data at earlier analyses
- Provides direct method for taking account of the fact that the outcome was for a secondary endpoint
- Can take into account clinical significance
Model

\[\delta = \log \text{hazard ratio for survival of patient receiving test treatment T relative to survival of patient receiving control C} \]

\[\text{Hazard (t) = risk of death in interval (t, t + \epsilon) given that the patient is alive at time t} \]

\[\text{Proportional hazard models assume that the hazard ratio is the same at all times t.} \]

\[\text{hazard ratio} = \frac{Rx \ T \ hazard(t)}{Rx \ C \ hazard(t)} \]
Model

- hazard ratio =1 means no treatment effect
- hazard ratio = 0.75 or 0.70 means there is a minimally clinically significant treatment effect
- hazard ratio ≤0.75 or ≤0.70 means that there is a treatment effect that is at least minimally clinically significant
- The true hazard ratio is unknown. The clinical trial provides us some information about it.
Model

- Using the data from the clinical trial, we would like to compute the probability that hazard ratio ≤ 0.75 or 0.70

- Since it uses the data from the clinical trial, it is called a posterior probability

- In order to compute the posterior probability, we have to specify our prior probability about the hazard ratio
Our prior belief about the hazard ratio is not a number; it is a specification of possible hazard ratio values and strengths of belief we hold for those numbers.

People with very strong prior beliefs that hazard ratio = 1 will need very strong evidence to change their beliefs.
If the clinical trial were a phase III trial being conducted because previous phase II trials indicated that the test treatment was effective, our prior belief that the hazard ratio $= 1$ might be about 50\% or less.

For a phase II trial being planned to evaluate whether the treatment has an effect on PFS, a “surprising result” on OS means we have a greater prior belief that the hazard ratio for OS $= 1$.

For our calculations, we take the prior probability that the hazard ratio $= 1$ as 0.90.
With this Bayesian model, we have placed the rest of the prior probability about the hazard ratio over the entire region < 1 using the negative part of a Gaussian distribution $N(0, \tau)$ for log(hazard ratio).

We have found that the results are robust with regard to the specification of the standard deviation τ.
To Compute the Posterior Probability Distribution of the hazard ratio

- Specify the estimated hazard ratio based on the clinical trial data
- Specify the number of total deaths observed in the final analysis of the clinical trial
 - The sample variance of the observed log hazard ratio equals $4/\text{total deaths}$
- Specify your prior beliefs about the OS hazard ratio
 - Prior probability hazard ratio = 1 (0.90)
 - Standard deviation τ of distribution of log hazard ratio (1)
Iniparib Phase II; deaths=73, p2t=.01, prior for null = 0.9

Area = 0.71
Olaratumub Phase II; deaths=90, MLE HR=.46, prior for null = 0.9

Area = .95
<table>
<thead>
<tr>
<th># events</th>
<th>(p_{2t})</th>
<th>Posterior Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Hr ≤ .70</td>
</tr>
<tr>
<td>25</td>
<td>.05</td>
<td>.75</td>
</tr>
<tr>
<td></td>
<td>.01</td>
<td>.88</td>
</tr>
<tr>
<td></td>
<td>.001</td>
<td>.96</td>
</tr>
<tr>
<td></td>
<td>.0001</td>
<td>.99</td>
</tr>
<tr>
<td>50</td>
<td>.05</td>
<td>.66</td>
</tr>
<tr>
<td></td>
<td>.01</td>
<td>.83</td>
</tr>
<tr>
<td></td>
<td>.001</td>
<td>.95</td>
</tr>
<tr>
<td></td>
<td>.0001</td>
<td>.98</td>
</tr>
<tr>
<td>100</td>
<td>.01</td>
<td>.71</td>
</tr>
<tr>
<td></td>
<td>.001</td>
<td>.89</td>
</tr>
<tr>
<td></td>
<td>.0001</td>
<td>.96</td>
</tr>
</tbody>
</table>
Friends of Cancer Research Annual Meeting

Panel 3: Optimization of Exploratory Randomized Trials

Cyrus Mehta, Ph.D.
Cytel Inc
and
Harvard TH Chan School of Public Health

November 16, 2016, Washington DC
Making provision for unexpected results in Phase 2 trials

• Suppose a phase 2 oncology trials shows unexpectedly strong results in OS

• Depending on the strength of evidence and quality of the data it may be possible to:
 • File a regulatory submission (exceptional case)
 • Expand the trial with additional patients and follow-up (very promising case)

• What minimum design-time pre-specification will permit trial expansion without undermining statistical integrity?
Basic Phase 2 Design with Provision for Expansion if Results are Promising

- Amazing
- Promising
- Poor

Sample Size

Z-statistic

Critical Value = 1.96x if trial is expanded

100 OS Events End of Phase 2
150 OS Events planned expansion
Case 1: Amazing result obtained. Stop trial and submit

Critical Value = 1.96x if trial is expanded

Sample Size

Z-statistic

100
OS Events
End of Phase 2

150
OS Events
planned expansion

Amazing

Promising

Poor
Case 2: Very promising result obtained. Continue to planned expansion

Critical Value = 1.96x if trial is expanded

100 OS Events
End of Phase 2

150 OS Events
planned expansion
Case 3: Promising result obtained. Adapt sample size beyond planned expansion

Critical Value = 1.96x if trial is expanded

Critical Value depends on magnitude of adaptive expansion

Z-statistic

Sample Size

Amazing

Promising

Poor

100 OS Events End of Phase 2

150 OS Events planned expansion

250 OS Events adaptive expansion
Case 4: Poor result obtained. Stop trial without going to planned expansion

Critical Value = 1.96x if trial is expanded

100 OS Events End of Phase 2
150 OS Events planned expansion
Supported by:

American Association for Cancer Research
American Society of Clinical Oncology
Susan G. Komen